首先,我们来说一下为什么要开发钠离子电池。我国的电池主要应用在三大产业,即电动汽车、储能和消费电子。围绕这三个方向,尤其近几年电动汽车和储能领域发展迅速,主打是锂离子电池。动力电池在2015年增长了80%左右,而在2016年已经突破了30GWh,随之而来的就是锂电池的废弃和循环问题凸显,而且锂的资源也有限。与此同时,储能也是目前发展很快的产业,尤其微电网方面会有大量的储能需求,到2020年,预计储能可以比2015年增长3倍。这么大量的电池需求,如果全用锂离子电池的话,存在两个问题:一个是锂的资源问题,一个是锂的循环利用问题。所以在锂电池之后,我们还有新的选择。这就涉及到用什么样的电池体系,用什么样的材料。基于这种考虑,我们能不能找出储量更丰富,材料更便宜的体系呢,最后我们选择了钠离子电池。
对于钠离子电池我们关注的焦点,一个是成本要低,正极材料要去锂脱钴,不用锂离子,也不用成本较高的钴原料;第二是在电动车和储能方面都要求电池寿命要长;第三是安全性要好;最后是能量密度要比较合适。
钠离子电池和锂离子电池的反应机理相近,正极材料除了磷酸盐或氟化磷酸盐以外,还可以用镍锰层状过渡金属氧化物。在负极材料方面可选择碳类、合金和化合物。在三大类负极材料中,我们还是选择最便宜的碳材料。我们对于负极碳材料又进行了软碳、硬碳和石墨烯三个分类的研究。
我们最近的一些研究成果,其中一个是采用层状结构Na0.67Ni0.33-xMxMn0.67O2作正极材料。经过实验研究和比较,在制备正极原材料的使用上,我们认为使用醋酸盐或草酸盐更好。根据文献报道,正极材料如果只用镍锰氧化物,它的循环性能和充电到高电位时的稳定性较差。所以有文献报道可以用镁掺杂,替代镍位,这样的话期待它的容量可以更高,这种方法对于获得高能量密度的钠离子电池是很有帮助的。除了镁以外,其他掺杂的元素可不可以呢?我们选择与替代元素离子半径相近的元素做掺杂,比如替代镍位,我们选了锆(Zr)离子和铜(Cu)离子进行掺杂。材料掺杂后与掺杂前电化学性能和循环性能都有提高,Zr掺杂和Cu掺杂相比,Cu掺杂的循环稳定性更好。
负极方面,由于软碳材料处理的方法比较多,我们尝试了用磷掺杂软碳。掺杂磷后放电容量可以提高30%以上,循环特性好。为什么掺磷后材料性能提高呢?这是由于掺磷后可以增加钠吸附的活性点。在传统的嵌入反应之外,还多了一些钠离子吸附的活性点位。另外,在硬碳方面,我们选用了椰壳、杏壳等生物质材料,通过处理,最终获得硬碳材料。通过拉曼分析可以发现,这些材料是短层有序、长层无序的结构,微晶的层间距较大,适合钠离子嵌入。通过循环实验可以看到,经过200次循环,容量基本没有衰降,循环稳定性很好。由此可见,这些生物质材料是很好的廉价的钠离子电池负极材料。再有,对于石墨烯负极我们也做了研究。石墨烯材料最大的问题是密度比较低,将来能不能做成高体积比能量的电池还是问题。所以可以考虑将石墨烯和其他负极材料如硬碳、软碳,以及化合物类或合金类材料进行复合。
我们做了1.5Ah和0.5Ah两种软包全电池,正极材料采用前面提到的镍锰氧化物,负极采用生物质的硬碳材料,经300次循环后容量衰降为15%。由此可见,钠离子电池用廉价材料是可以制备的,而且电性能良好。