2.5 温度采集模块设计
本设计采用美国Dallas公司生产的DSl8820单总线数字式智能型温度传感器,直接将温度物理量转化为数字信号,并以总线方式传送到控制器 进行数据处理。DS18B20对于实测的温度提供了9~12位的数据和报警温度寄存器,测温范围为一55~+125℃,其中在一10~+85℃的范围内测 量精度为±0.5℃。此传感器可适用于各种领域、各种环境的自动化测量及控制系统,具有微型化、功耗低、性能高、抗干扰能力强、易配微处理器等优点。此 外,每一个DSl8820有唯一的系列号,因此多个DSl8820可以存在于同一条单线总线上,给应用带来了极大的方便。
测温电路设计如图4所示。系统采用热传导的粘合剂将器件粘附在蓄电池表面上,管芯温度与表面温度之差大约在O.2℃之内。当环境空气温度与被测量的蓄电池温度不同时,应将器件的背面和引线与空气隔离。接地引脚是通向管芯的最主要的热量路径,必须保证接地引脚也与被测温的蓄电池有良好的热接触。
2.6 可控充放电模块
该模块是实际设计中的硬件难点。它与外电网相连,对车载电池进行充电;能根据控制电路发出的指令或标志位,实现对蓄电池分阶段以不同电流充电;且有自动断电的功能,可实现智能充电。本系统主要是针对电动车蓄电池组进行管理,用于给蓄电池组 充电的电流都比较大。为此,选择了基于IGBT的智能功率模块(Intelligent Power Module,IPM)进行大电流充放电管理。IPM是先进的混合集成功率器件,由高速、低功耗的IGBT和驱动电路及保护电路构成;内有过电压、过电 流、短路和过热等故障检测电路,具有自动保护功能。蓄电池充放电主回路如图5所示。
图5中,Q1和Q2集成在一个IPM中。Q2打开时给蓄电池组充电,Q1打开时蓄电池组通过R1放电;蓄电池组给负载供电时,Q1、Q2均闭合。为改善功率开关器件的工作状态,主电路中采用了软开关技术。在采用大电流充电的情况下,由于长时间对蓄电池组进行充电,电荷堆积于电池电极上而产生反向电压,实际上表现为电池内阻的增加,不但蓄电池中的有效化学物质不能完全参加化学反应,降低了蓄电池组容量的利用率,而且还会引起蓄电池组的严重发热,从而影响充电速度与质量,继而影响蓄电池组的性能和寿命。消除它的有效方法是采用负脉冲方法:在电池两端瞬间放电去除电极上堆积的电荷,从而改变蓄电池固有的指数曲线形式的充电接受特性,提高电池的受电能力。为此,采用了“充-停-放-充-停-放”循环充电的充电策略。其脉冲充电特性如图6所示,时间参数由蓄电池的参数决定。
2.7 电量及状态输出指示和报警模块
为降低系统复杂度及成本,本设计采用3个8段数码管来显示系统状态。可以进行简单的参数设定,实时显示状态、温度等数据以实现较好的人机交互。本 设计采用在软件上对输入进行消抖处理的方案,并对按键状态进行连续的判断处理,直到按键松开为止,然后才执行相应的处理程序。数据显示采用3位7段数码管 动态显示方式,使用74HC595锁存动态显示数据。本设计巧妙地将按键输入与动态显示数位选择端口共用,从而减少了单片机端口的应用,达到了系统优化及 降低产品成本的目的。报警采用的是蜂鸣器。
3 系统软件设计
本系统软件设计流程如图7所示。系统启动后,立即执行系统初始化程序,从EEPROM中读取上次运行得到的参数。然后开始读取温度传感器中的数据以获取当前系统温度,再调用A/D采样子程序以获取10位精度的电压电流信号数据。经过处理可以得到最终的蓄电池运行状态,根据不同的状态进行各自的处理程序,并将状态数据输出到数码管显示。系统在运行时将根据已有的数据和监测到的数据,自动对参数进行修正,以准确地反映蓄电池的内部参数,实现系统管理的智能化。
结 语
本系统采用MB95F136作为控制器,充分利用了其外围接口多、功能强、集成高精度A/D转换器、操作方便、实际成本低,以及便于系统模块化和小型化的优点。系统可以实时、准确地监测蓄电池的状态和显示蓄电池的电量,在电量不足时能够自动切换电源系统以实行自我保护。参数数据的更新依据是经过多次实验、对实测参数进行比较和运算的结果,通过实验,剩余电量计算值较未更新参数时更接近实际值。实践证明,该智能型铅酸蓄电池管理系统智能化程度高、测量准确,能及时发现并控制对蓄电池的不当使用,提供自我保护,并能够准确地判断系统的运行状态,不仅大大提高了被供电系统的稳定性,而且有助于提高蓄电池的使用寿命和效率。